Neuroscience and leadership: awareness, relevance and applications of neuroscience principles within leadership development in Germany

Dürrbeck, Klaus (2016)

The research relied on the analysis of secondary data and the generation of primary data through semi-structured expert interviews. Literature, institutional papers, and trend studies were analysed to sharpen the scope of research and inform primary data generation. Subsequently, experts were interviewed to create new insights and answer the research questions.

It was found that human resource executives are well aware about the matter of neuroscience with business applicability, while leaders’ awareness was identified as rather low. However, relevance for corporate success and hence application within leadership development programmes were...
Applying Neuroscience Insights to Leadership Education. As Associate Dean of Executive Education at MIT Sloan School of Management, a big part of my job is to champion scientific knowledge as it applies to management and leadership education. So, needless to say, I was quite excited to learn what brain-based insights can teach business leaders.

The Intersection of Psychology and Neuroscience in Management. I connected Swart with MIT Sloan management professor Dr. Deborah Ancona and the two became fast friends and colleagues. The two-day course provides hands-on application of concepts and techniques derived from brain research and psychology that can improve individual leadership performance, as well as that of teams and organizations. The leadership development course explores leadership development as a scientific study. Specifically, the course examines principles that will set students on a lifelong path of becoming a leader of character who treats others with respect and dignity. Management focuses on the successful techniques that allow people to understand and influence their environment. Read full chapter. The Neuroscience of Leadership. Breakthroughs in brain research explain how to make organizational transformation succeed. by David Rock and Jeffrey Schwartz. These ions travel through channels within the brain that are, at their narrowest point, only a little more than a single ion wide. This means that the brain is a quantum environment, and is therefore subject to all the surprising laws of quantum mechanics. One of these laws is the Quantum Zeno Effect (QZE). Mark Jung-Beeman of Northwestern University’s Institute for Neuroscience and others have recently used fMRI and EEG technologies to study moments of insight. One study found sudden bursts of high-frequency 40 Hz oscillations (gamma waves) in the brain appearing just prior to moments of insight.